Photocurrent enhancement of SiNW-FETs by integrating protein-shelled CdSe quantum dots.

نویسندگان

  • Sang Hyun Moh
  • Atul Kulkarni
  • Boi Hoa San
  • Jeong Hun Lee
  • Doyoun Kim
  • Kwang Su Park
  • Min Ho Lee
  • Taesung Kim
  • Kyeong Kyu Kim
چکیده

We proposed a new strategy to increase the photoresponsivity of silicon NW field-effect transistors (FETs) by integrating CdSe quantum dots (QDs) using protein shells (PSs). CdSe QDs were synthesized using ClpP, a bacterial protease, as protein shells to control the size and stability of QD and to facilitate the mounting of QDs on SiNWs. The photocurrent of SiNW-FETs in response to light at a wavelength of 480 nm was enhanced by a factor of 6.5 after integrating CdSe QDs because of the coupling of the optical properties of SiNWs and QDs. As a result, the photoresponsivity to 480 nm light reached up to 3.1 × 10(6), the highest value compared to other SiNW-based devices in the visible light range.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-156: A Study about Toxicity of CdSe Quantum Dots on Male Sexual System of Mice and Controlling This Toxicity by ZnS Coverage in Immature Mice

Background: Quantum dots are commonly composed of cadmium contained semiconductors. Cadmium is potentially hazardous but toxicity of such quantum dots is not yet systematically investigated. On the other hand, in vitro studies have shown almost complete control of CdSe induced cytotoxicity by ZnS coverage. Toxicity of CdSe quantum dots and controlling this toxicity by ZnS coverage in immature m...

متن کامل

Hybrid light sensor based on ultrathin Si nanomembranes sensitized with CdSe/ZnS colloidal nanocrystal quantum dots.

We report the observation of a large enhancement of the wavelength-dependent photocurrent in ultrathin silicon nanomembranes (SiNM) decorated with colloidal CdSe/ZnS nanocrystal quantum dots (NQDs). Back-gated, field-effect transistor structures based on 75 nm-thick SiNMs are functionalized with self-assembled monolayers (SAMs) preventing surface oxidation and minimizing the surface defect dens...

متن کامل

Large-scale, solution-phase growth of semiconductor nanocrystals into ultralong one-dimensional arrays and study of their electrical properties.

One-dimensional (1D) assemblies of semiconductor nanocrystals (NCs) represent an important kind of 1D nanomaterial system due to their potential for exploring novel and enhanced electronic and photonic performances of devices. Herein, we present mass fabrication of a series of 1D arrays of CdSe and PbSe NCs on a large length scale with ultralong, aligned Se nanowires (NWs) as both the reactant ...

متن کامل

A comparative study about toxicity of CdSe quantum dots on reproductive system development of mice and controlling this toxicity by ZnS coverage

Objective(s):  Medicinal benefits of quantum dots have been proved in recent years but there is little known about their toxicity especially in vivo toxicity. In order to use quantum dots in medical applications, studies ontheir in vivo toxicity is important.  Materials and Methods:CdSe:ZnS quantum dots were injected in 10, 20, and 40 mg/kg doses to male mice10 days later, mice were sacrificed ...

متن کامل

In vivo Effects of CdSe Injection on Embryonic Development of Reproductive System

The use of quantum dots (QDots) as bright and photostable probes for long-term fluorescence imaging is gaining more interest. Thus far, (pre)clinical use of QDots remains limited, which is primarily caused by the potential toxicity of QDots. Most QDots consist of Cd2+ ions, which are known to cause high levels of toxicity. Therefore, the cytotoxic effects of CdSe quantum dots on embryonic devel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nanoscale

دوره 8 4  شماره 

صفحات  -

تاریخ انتشار 2016